structural and ionic bond strength investigation using pauling esb rules of nonstochiometric spinel compounds lixmn2o4 and stoichiometric li1+ymn2-yo4, as cathode materials for rechargeable lithium-ion batteries

نویسندگان

m. alavi

چکیده

in this paper we present our studies using pauling electrostatic bond strength (esb) rules forstructural behaviour, cation vacancies, relation between x, y, and the valence of cations and coordinationin spinel compounds lixmn2o4, 0

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NMR studies of cathode materials for lithium-ion rechargeable batteries.

Lithium intercalation or insertion materials have been widely investigated in the search for new electrode materials for use in high-voltage rechargeable batteries.1-6 The first commercial Li-ion rechargeable battery contains the layered materials LiCoO2 (Figure 1) and graphite as the cathode (or positive electrode) and anode (or negative electrode), respectively.7 Although this battery is the ...

متن کامل

High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries.

Li(2)S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li(2)S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discov...

متن کامل

Spinel LiNi0.5Mn1.5O4 Cathode for High-Energy Aqueous Lithium-Ion Batteries

DOI: 10.1002/aenm.201600922 considering the overpotential during charge process. Recently, Yamada et al. reported that LiNi0.5Mn1.5O4 can only reversibly provide capacity of ≈75 mA h g−1 in the more concentrated hydrate melt electrolytes (≈30 mol kg−1), which is 50% of theoretical capacity.[14] The oxygen evolution side reaction also largely significantly reduce the coulombic efficiency. In add...

متن کامل

In Situ X-ray Absorption Studies of Cathode Materials for Rechargeable Lithium-Ion Batteries

Rechargeable batteries with high energy and power density are in great demand as energy sources for various purposes; e.g., portable telecommunication, computer equipment, hybrid electric vehicles, etc. Lithiumion batteries are the most promising candidates to fulfill such needs due to their intrinsic high discharge voltage and relatively light weight. The current commercial lithium-ion battery...

متن کامل

Lithium batteries and cathode materials.

In the previous paper Ralph Brodd and Martin Winter described the different kinds of batteries and fuel cells. In this paper I will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior. The lithium battery industry is undergoing rapid expansion,...

متن کامل

Optimization of Layered Cathode Materials for Lithium-Ion Batteries

This review presents a survey of the literature on recent progress in lithium-ion batteries, with the active sub-micron-sized particles of the positive electrode chosen in the family of lamellar compounds LiMO₂, where M stands for a mixture of Ni, Mn, Co elements, and in the family of yLi₂MnO₃•(1 - y)LiNi½Mn½O₂ layered-layered integrated materials. The structural, physical, and chemical propert...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of science and technology (sciences)

ISSN 1028-6276

دوره 29

شماره 1 2005

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023